lunes, 17 de marzo de 2014

EL UNIVERSO



Una de las preguntas que se hace el ser humano desde que empezó la evolución se refiere al mundo que nos rodea. A medida que aumentan los conocimientos, este mundo se va ampliando. La educación en Astronomía contribuye a un mejor conocimiento sobre el Universo. Los cursos sobre esta materia se imparten desde hace muchos siglos.




El Universo ha sido un misterio hasta hace pocos años, de hecho, todavía lo es, aunque sabemos muchas cosas. Desde las explicaciones mitológicas o religiosas del pasado, hasta los actuales medios científicos y técnicos de que disponen los astrónomos, hay un gran salto qualitativo que se ha desarrollado, sobre todo, a partir de la segunda mitad del siglo XX.
Quedan muchísimas cosas por descubrir, pero es que el Universo es enorme, o nosotros demasiado pequeños. En todo caso, vamos a hacer un viaje, en lenguaje sencillo y sin alardes, por lo más significativo que nos ofrece el conocimiento actual del Universo.


¿QUÉ ES EL UNIVERSO?
El Universo es todo, sin excepciones.


Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. Es muy grande, pero no infinito. Si lo fuera, habría infinita materia en infinitas estrellas, y no es así. En cuanto a la materia, el universo es, sobre todo, espacio vacío.

Temperaturas del Universo, de frío (azul) a caliente (rojo)
El Universo contiene galaxias, cúmulos de galaxias y estructuras de mayor tamaño llamadas supercúmulos, además de materia intergaláctica. Todavía no sabemos con exactitud la magnitud del Universo, a pesar de la avanzada tecnología disponible en la actualidad.

La materia no se distribuye de manera uniforme, sino que se concentra en lugares concretos: galaxias, estrellas, planetas ... Sin embargo, el 90% del Universo es una masa oscura, que no podemos observar. Por cada millón de átomos de hidrógeno los 10 elementos más abundantes son:




Nuestro lugar en el Universo

Nuestro mundo, la Tierra, es minúsculo comparado con el Universo. Formamos parte del Sistema Solar, perdido en un brazo de una galaxia que tiene 100.000 millones de estrellas, pero sólo es una entre los centenares de miles de millones de galaxias que forman el Universo.



La teoría del Big Bang explica cómo se formó

Dice que hace unos 13.700 millones de años la materia tenía una densidad y una temperatura infinitas. Hubo una explosión violenta y, desde entonces, el universo va perdiendo densidad y temperatura.

El Big Bang es una singularidad, una excepción que no pueden explicar las leyes de la física. Podemos saber qué pasó desde el primer instante, pero el momento y tamaño cero todavía no tienen explicación científica.
Estructura del universo


La materia del Universo está ordenada. La fuerza de gravedad hace que la materia se agrupe formando estructuras. Desde las más simples, como las estrellas o los sistemas solares, hasta las gigantescas murallas de galaxias. Aún así, la expansión del Universo hace que las distintas estructuras se alejen unas de otras a gran velocidad.


Las estructuras más distantes son las más grandes y antiguas. Se formaron cuando el Universo aún era muy joven, y ayudan a conocer su evolución.


Tamaño del universo


El Universo abarca todo lo conocido: la materia, la energía, el espacio y el tiempo. Las escalas en el universo son tan grandes que ni siquiera podemos imaginarlas. Para hacernos una idea, por cada grano de arena que hay en la Tierra, existen un millón de estrellas. Nuestra galaxia es sólo una entre cientos de miles de millones.

Aún así, toda la materia del Cosmos es sólo una pequeñísima parte del universo. El Universo es, sobre todo, un inmenso espacio casi vacío.

Es imposible conocer el tamaño exacto del Universo. Podría incluso ser infinito, aunque no parece probable. Al no saber qué forma tiene, tampoco podemos calcular su tamaño. Además, sigue expandiéndose. Sólo conocemos el tamaño del Universo visible desde la Tierra.


El límite del Universo visible desde la Tierra está a 46.500 millones de años luz, en todas las direcciones. Es decir, un diámetro de 93.000 millones de años luz. Un año luz son 9'46 billones de kilómetros. El cálculo es enorme, y aún así, es sólo la parte del Universo que podemos ver. Tras el Big Bang, el Universo se expandió tan rápidamente que parte de su luz aún no ha llegado hasta nosotros y, por eso, no podemos verlo.


Pero si el Universo sólo tiene 13.700 millones de años, ¿cómo puede haber objetos más alejados? No es posible que se hayan alejado más rápidamente que la velocidad de la luz. La respuesta es la inflación del Universo.

La inflación es el origen de todo: del propio espacio, del tiempo, y de todas las leyes físicas, incluido el límite de la velocidad de la luz. Todo se crea en la propia inflación. Así que la inflación del Universo no está sometida al límite de la velocidad de la luz. La inflación crea nuevo espacio entre los objetos y los aleja.



Las estrellas




Las estrellas son masas de gases, principalmente hidrógeno y helio, que emiten luz. Se encuentran a temperaturas muy elevadas. En su interior hay reacciones nucleares.

El Sol es una estrella. Vemos las estrellas, excepto el Sol, como puntos luminosos muy pequeños, y sólo de noche, porque están a enormes distancias de nosotros. Parecen estar fijas, manteniendo la misma posición relativa en los cielos año tras año. En realidad, las estrellas están en rápido movimiento, pero a distancias tan grandes que sus cambios de posición se perciben sólo a través de los siglos.

El número de estrellas observables a simple vista desde la Tierra se ha calculado en unas 8.000, la mitad en cada hemisferio. Durante la noche no se pueden ver más de 2.000 al mismo tiempo, el resto quedan ocultas por la neblina atmosférica, sobre todo cerca del horizonte, y la pálida luz del cielo.

Los astrónomos han calculado que el número de estrellas de la Vía Láctea, la galaxia a la que pertenece el Sol, asciende a cientos de miles de millones.

Como nuestro Sol, una estrella típica tiene una superficie visible llamada fotosfera, una atmósfera llena de gases calientes y, por encima de ellas, una corona más difusa y una corriente de partículas denominada viento estelar. Las áreas más frías de la fotosfera, que en el Sol se llaman manchas solares, probablemente se encuentren en otras estrellas comunes. Esto se ha podido comprobar en algunas grandes estrellas próximas mediante interferometría.

La estructura interna de las estrellas no se puede observar de forma directa, pero hay estudios que indican corrientes de convección y una densidad y una temperatura que aumentan hasta alcanzar el núcleo, donde tienen lugar reacciones termonucleares.


Las estrellas se componen sobre todo de hidrógeno y helio, con cantidad variable de elementos más pesados.

Las galaxias


Las galaxias son acumulaciones enormes de estrellas, gases y polvo.

En el Universo hay centenares de miles de millones. Cada galaxia puede estar formada por centenares de miles de millones de estrellas y otros astros. En el centro de las galaxias es donde se concentran más estrellas.

Cada cuerpo de una galaxia se mueve a causa de la atracción de los otros. En general hay, además, un movimiento más amplio que hace que todo junto gire alrededor del centro.


Tamaños y formas de las galaxias

Hay galaxias enormes como Andrómeda, o pequeñas como su vecina M32. Las hay en forma de globo, de lente, planas, elípticas, espirales (como la nuestra) o formas irregulares. Las galaxias se agrupan formando "cúmulos de galaxias".



La galaxia grande más cercana es Andrómeda.

Se puede observar a simple vista y parece una mancha luminosa de aspecto brumoso. Los astrónomos árabes ya la habían observado. Actualmente se la conoce con la denominación M31. Está a unos 2.200.000 años luz de nosotros. Es el doble de grande que la Via Láctea.

Las galaxias tienen un origen y una evolución

Las primeras galaxias se empezaron a formar 1.000 millones de años después del Big-Bang. Las estrellas que las forman tienen un nacimiento, una vida y una muerte. El Sol, por ejemplo, es una estrella formada por elementos de estrellas anteriores muertas.

Muchos nucleos de galaxias emiten una fuerte radiación, cosa que indica la probable presencia de un agujero negro.

Los movimientos de las galaxias provocan, a veces, choques violentos. Pero, en general, las galaxias se alejan las unas de las otras, como puntos dibujados sobre la superficie de un globo que se infla.


Jerarquía de estructuras


Estructuras menores: son los cuerpos celestes, como los planetas y las estrellas, y las pequeñas agrupaciones, como nuestro Sistema Solar.




Galaxias:
 Son estructuras intermedias. Agrupan familias de estrellas, gas, polvo y materia oscura. Sólo en el universo visible hay más de 100.000 millones, y pueden agrupar billones de estrellas. Muchas tienen un agujero negro en su centro. Nuestra galaxia es la Vía Láctea.

Cúmulos de galaxias: 
Son conjuntos de galaxias envueltos en gas caliente. Su diámetro alcanza varios millones de años luz. Las galaxias giran unas en torno a otras, unidas por la gravedad. A veces chocan o se absorben unas a otras. La Vía Láctea pertenece a un cúmulo llamado Grupo Local, formado por 25 galaxias.

Supercúmulos de galaxias: 
Son conjuntos de cúmulos de galaxias. Miden cientos de millones de años luz. Forman grandes capas por todo el Universo visible. El Grupo Local forma parte del Supercúmulo de Virgo.

Murallas: 
Estas son las últimas estructuras descubiertas, las más antiguas y grandes del Universo. Forman enormes franjas de supercúmulos de galaxias. La gran muralla de Sloan mide 1.370 millones de años luz y es la mayor estructura que se conoce.

El Gran Atractor:
 El Supercúmulo de Virgo y el resto de estructuras del Universo visible avanzan hacia un misterioso punto llamado el Gran Atractor. Su centro está a 150 millones de años luz. Se descubrió a finales de los 80 y aún no se sabe qué es, aunque podría tratarse de una estructura aún mayor.

VIDEO SOBRE LA VÍA  LÁCTEA- EL UNIVERSO






EL SISTEMA SOLAR



El Sistema Solar está formado por una estrella central, el Sol, los cuerpos que le acompañan y el espacio que queda entre ellos.

Ocho planetas giran alrededor del Sol: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano y Neptuno, además del planeta enano, Plutón. La Tierra es nuestro planeta y tiene un satélite, la Luna. Algunos planetas tienen satélites girando a su alrededor, otros no.

Los asteroides son rocas más pequeñas que también giran, la mayoría entre Marte y Júpiter. Además, están los cometas que se acercan y se alejan mucho del Sol.

A veces llega a la Tierra un fragmento de materia extraterrestre. La mayoría se encienden y se desintegran cuando entran en la atmosfera. Son los meteoritos.

Los planetas, muchos de los satélites de los planetas y los asteroides giran alrededor del Sol en la misma dirección, en órbitas casi circulares. Cuando se observa desde lo alto del polo norte del Sol, los planetas orbitan en una dirección contraria al movimiento de las agujas del reloj.


Casi todos los planetas orbitan alrededor del Sol en el mismo plano, llamado eclíptica. Plutón es un caso especial, ya que su órbita es la más inclinada y la más elíptica de todos. Hasta hace poco se le consideraba un planeta, pero ya no. El eje de rotación de muchos de los planetas es casi perpendicular al eclíptico. Las excepciones son Urano y Plutón, los cuales están inclinados hacia sus lados.




El Sol contiene el 99.85% de toda la materia en el Sistema Solar. Los planetas están condensados del mismo material del que está formado el Sol, contienen sólo el 0.135% de la masa del sistema solar. Júpiter contiene más de dos veces la materia de todos los otros planetas juntos. Los satélites de los planetas, cometas, asteroides, meteoroides, y el medio interplanetario constituyen el restante 0.015%.

Casi todo el sistema solar por volumen parece ser un espacio vacío que llamamos "medio interplanetario". Incluye varias formas de energía y se contiene, sobre todo, polvo y gas interplanetarios.


VIDEO SOBRE EL SISTEMA SOLAR



LA IMPORTANCIA DE LA ENERGÍA EN NUESTRO PLANETA

Al mirar a nuestro alrededor se observa que las plantas crecen, los animales se trasladan y que las máquinas y herramientas realizan las más variadas tareas. Todas estas actividades tienen en común que precisan del concurso de la energía.
La energía es una propiedad asociada a los objetos y sustancias, ésta  se manifiesta en las transformaciones que ocurren en la naturaleza como en los cambios físicos, por ejemplo, al elevar un objeto, transportarlo, deformarlo o calentarlo.

Esta también está presente en los cambios químicos, como al quemar un trozo de madera o en la descomposición de agua mediante la corriente eléctrica.                                

1.     FORMAS DE ENERGÍA

La energía puede manifestarse de diferentes maneras: en forma de movimiento (cinética), de posición (potencial), de calor, de electricidad, de radiaciones electromagnéticas, etc. Según sea el proceso, la energía se denomina:

o       Energía térmica

o       Energía eléctrica

o       Energía radiante

o       Energía química

o       Energía nuclear

a)  Energía térmica

La energía térmica se debe al movimiento de las partículas que constituyen la materia. Un cuerpo a baja temperatura tendrá menos energía térmica que otro que esté a mayor temperatura.

La transferencia de energía térmica de un cuerpo a otro debido a una diferencia de temperatura se denomina calor.

b)  Energía eléctrica

La energía eléctrica es causada por el movimiento de las cargas eléctricas en el interior de los materiales conductores. Esta energía produce, fundamentalmente, tres efectos: luminoso, térmico y magnético. Ej.: La transportada por la corriente eléctrica en nuestras casas y que se manifiesta al encender una bombilla.

c)  Energía radiante

La energía radiante es la que poseen las ondas electromagnéticas como la luz visible, las ondas de radio, los rayos ultravioleta (UV), los rayos infrarrojo (IR), etc. La característica principal de esta energía es que se puede propagar en el vacío, sin necesidad de soporte material alguno. Ej.: La energía que proporciona el Sol y que nos llega a la Tierra en forma de luz y calor.
d)    Energía química

La energía química es la que se produce en las reacciones químicas. Una pila o una batería poseen este tipo de energía. Ej.: La que posee el carbón y que se manifiesta al quemarlo.

e)     Energía nuclear

La energía nuclear es la energía almacenada en el núcleo de los átomos y que se libera en las reacciones nucleares de fisión y de fusión, ej.: la energía del uranio, que se manifiesta en los reactores nucleares.

2.   FUENTES DE ENERGÍA

Las fuentes de energía son los recursos existentes en la naturaleza de los que la humanidad puede obtener energía utilizable en sus actividades.

El origen de casi todas las fuentes de energía es el Sol, que "recarga los depósitos de energía". Las fuentes de energía se clasifican en dos grandes grupos: renovables y no renovables; según sean recursos "ilimitados" o "limitados".

2.1 Fuentes de energía renovables

Las fuentes de energía renovables son aquellas que, tras ser utilizadas, se pueden regenerar de manera natural o artificial. Algunas de estas fuentes renovables están sometidas a ciclos que se mantienen de forma más o menos constante en la naturaleza.

      Existen varias fuentes de energía renovables, como son:
Energía mareomotriz (mareas)
Energía hidráulica (embalses)
Energía eólica (viento)
Energía solar (Sol)

a)  Energía hidráulica

La energía hidráulica es la producida por el agua retenida en embalses o pantanos a gran altura (que posee energía potencial gravitatoria). Si en un momento dado se deja caer hasta un nivel inferior, esta energía se convierte en energía cinética y, posteriormente, en energía eléctrica en la central hidroeléctrica.
Ventajas: Es una fuente de energía limpia, sin residuos y fácil de almacenar. Además, el agua almacenada en embalses situados en lugares altos permite regular el caudal del río.
Inconvenientes: La construcción de centrales hidroeléctricas es costosa y se necesitan grandes tendidos eléctricos. Además, los embalses producen pérdidas de suelo productivo y fauna terrestre debido a la inundación del terreno destinado a ellos. También provocan la disminución del caudal de los ríos y arroyos bajo la presa y alteran la calidad de las aguas.



b)  Energía Eólica

La energía eólica es la energía cinética producida por el viento. se transforma en electricidad en unos aparatos llamados aerogeneradores (molinos de viento especiales).
Ventajas: Es una fuente de energía inagotable y, una vez hecha la instalación, gratuita. Además, no contamina: al no existir combustión, no produce lluvia ácida, no contribuye al aumento del efecto invernadero, no destruye la capa de ozono y no genera residuos.
Inconvenientes: Es una fuente de energía intermitente, ya que depende de la regularidad de los vientos. Además, los aerogeneradores son grandes y caros. 


c)  Energía Solar

La energía solar es la que llega a la Tierra en forma de radiación electromagnética (luz, calor y rayos ultravioleta principalmente) procedente del Sol, donde ha sido generada por un proceso de fusión nuclear. El aprovechamiento de la energía solar se puede realizar de dos formas: por conversión térmica de alta temperatura (sistema fototérmico) y por conversión fotovoltaica (sistema fotovoltaico).
La conversión térmica de alta temperatura consiste en transformar la energía solar en energía térmica almacenada en un fluido. Para calentar el líquido se emplean unos dispositivos llamados colectores.
La conversión fotovoltaica consiste en la transformación directa de la energía luminosa en energía eléctrica. Se utilizan para ello unas placas solares formadas por células fotovoltaicas (de silicio o de germanio).
Ventajas: Es una energía no contaminante y proporciona energía barata en países no industrializados.
Inconvenientes: Es una fuente energética intermitente, ya que depende del clima y del número de horas de Sol al año. Además, su rendimiento energético es bastante bajo.





IMPLICACIONES DE LA OBTENCIÓN Y APROVECHAMIENTO DE LA ENERGÍA EN LAS ACTIVIDADES HUMANAS


Implicaciones de la obtención y aprovechamiento de la energía en las actividades humanas
La utilización de la energía ha mejorado la "habitabilidad" en las ciudades al aumentar el nivel de confort por medio de la calefacción y de la iluminación, al posibilitar ciertas transformaciones físico-químicas como el cocinar, la obtención de metales y el cocido de materiales cerámicos y vítreos, o al incrementar el rendimiento de nuestro esfuerzo muscular por medio de motores aplicados a máquinas o a vehículos. Junto a ello se han originado unos efectos indeseados -y a menudo desconocidos y minimizados- que están afectando seriamente a la sostenibilidad del modo de uso de la energía.

La forma como utilizamos la energía también afecta las posibilidades de mantener un desarrollo de nuestra sociedad. Si consumimos demasiado poca energía, deberemos consumir demasiado esfuerzo para cubrir las necesidades básicas, y no podremos dedicar el esfuerzo necesario para desarrollarnos. Pero si consumimos demasiada energía, el coste (monetario, ambiental o de recursos) de este excesivo consumo nos obligará a dedicarle un esfuerzo adicional que no podremos orientar hacia el desarrollo que perseguimos.

Las formas de energía que se han utilizado para las actividades básicas desarrolladas en el medio urbano de nuestro entorno han ido evolucionando con el tiempo. El cocinar -que se hizo casi exclusivamente con leña durante muchos siglos- se ha ido realizando además con carbón en ciertos lugares (en fogones abiertos, en hornos y en cocinas "económicas"), con petróleo, gas (ciudad obtenido a partir del carbón, la leña o el petróleo, o butano y natural en tiempos más modernos) o electricidad en nuestras tierras, pero también se ha empleado estiércol o los rayos solares en otras culturas.

La calefacción se ha conseguido con leña (en chimeneas o diversos tipos de estufas), carbón, petróleo, gas y electricidad, pero también con residuos como el serrín (en estufas), la paja (en los purgatorios, conducciones de aire caliente bajo el suelo), el orujo (en los braseros) o la energía solar ya sea con sistemas pasivos, activos o mixtos.

Para la iluminación se han utilizado aceites, grasas, carburos, ceras, petróleo, gas y electricidad de la red o fotovoltaica. Ciertas actividades mecánicas -como la molienda del grano de los cereales- se han efectuado además de manualmente, por medio de animales, de ruedas hidráulicas o de molinos de viento por lo que es frecuente aún hoy encontrar calles y plazas con nombres que lo recuerdan (del molino, de las muelas, de la acequia).
El suministro de agua a las ciudades se ha conseguido por medio de la gravedad (canalizaciones), por medio de ruedas hidráulicas movidas por los ríos y las mareas, o por medio de bombas accionadas por vapor, gas o electricidad.

Para el transporte colectivo de personas o de mercancías se utilizaron animales de tiro durante siglos,seguidos de vehículos propulsados por motores de vapor (a carbón), por motores eléctricos (a partir de pilas al principio y de baterías posteriormente, o alimentados por cables externos como en metros, tranvías y trolebuses), de gas (natural, licuados del petróleo, u obtenidos por la pirólisis de residuos vegetales como las cáscaras de almendra en los llamados "gasógenos"), o tirados por cables (como los funiculares y el famoso tranvía de San Francisco).

Como puede verse, no hay un determinismo tecnológico respecto a las fuentes y técnicas a utilizar. Las situaciones actuales son producto de las decisiones tomadas a lo largo de la historia en cuanto el tipo y la calidad de las prestaciones, los costes económicos directos y "externos", la salubridad, la contaminación y la asignación de los recursos energéticos entre otros factores.


A título de ejemplo, citemos diversos casos de prohibición de ciertas fuentes en ciudades a lo largo de la historia. En Inglaterra la hulla fue prohibida por los problemas sanitarios causados por el humo que producía, y la leña lo fue por la prioridad que tenía para la marina mercante. El carbón y otros combustibles sólidos similares en París se prohibieron por el problema que originaban las cenizas en las basuras. En situaciones de contaminación demasiado elevada, se prohíben ciertos tipos de combustibles en muchas ciudades. En España los vehículos particulares no pueden utilizar los GLP como lo hacen ciertos vehículos públicos. Lo curioso es que en los domicilios particulares podemos almacenar bombonas con GLP pero no la gasolina que almacenamos en los vehículos particulares.

PROPIEDADES DE LA LUZ


PROPIEDADES DE LA LUZ

Al igual que el sonido, la luz es otra forma de energía conocida como energía radiante, que también se propaga mediante ondas.

Puede provenir de una fuente natural, como el Sol, o artificial como las velas, focos y lámparas.

La luz viaja en línea recta y en todas direcciones a gran velocidad, alcanza 300 000 km por segundo.

Dependiendo del material al que llegue, la luz puede transmitirse, reflejarse o absorberse.

Cuando la luz del Sol llega a la Tierra, pasa a través del aire, es decir, se transmite. Además de transmitirse en el aire, la luz puede hacerlo en otros gases, en casi todos los líquidos y hasta en algunos sólidos.

Si la luz choca con algún cuerpo y no se transmite, entonces es reflejada. La Luna puede verse debido a que refleja los rayos del Sol. Si por el contrario, la luz no es reflejada ni transmitida en algún material, entonces es absorbida. En este caso, la energía solar se transforma en energía calorífica que se manifiesta calentando los materiales que la absorben.

Los materiales que transmiten la luz pueden hacerlo de dos maneras: los transparentes dejan pasar la luz a través de ellos permitiendo ver lo que está del otro lado, por ejemplo, los vidrios de una ventana, y los translúcidos, que sólo dejan pasar una parte de la luz, e impiden ver claramente todo lo que está del otro lado, por ejemplo, un cubo de luz.

También existen materiales opacos que no transmiten la luz, como la mayoría de los materiales sólidos y los seres vivos.

Cuando la luz choca con un material opaco se produce una sombra, porque la luz sólo viaja en línea recta y no se curva al encontrar un material opaco.









VIDEO SOBRE LA LUZ




SENTIDO DE LA VISTA

Los ojos son los órganos de la visión y necesitan luz para poder ver. Cuando la luz llega a ellos, mandan mensajes al cerebro y éste señala qué es lo que se está viendo.

Los ojos son más grandes de lo que aparentan ser, pues una parte de ellos está contenida en las cavidades oculares de la cara. Los ojos son esféricos y en su interior contienen un líquido que ayuda a que conserven su forma y tamaño.

La parte blanca del ojo se llama esclerótica y la que tiene color, iris. En el centro del iris está la pupila, por ella entra la luz del exterior.

Cuando una persona está en lugares poco iluminados, la pupila se hace más grande para que entre mayor cantidad de luz; pero si se encuentra en un sitio luminoso, se hace más pequeña.

Atrás de la pupila se localiza una lente clara y curva llamada cristalino que se dobla para proyectar los rayos luminosos hacia la retina. La retina es como la pared interna del ojo.

En la retina se forman las imágenes que se envían al cerebro a través del nervio óptico.

Algunas personas no ven claramente objetos cercanos a ellas y otras los que están alejados. Esto se debe a que el cristalino no se dobla como debiera; para corregir esos problemas se usan lentes.

En la retina se encuentran unas células llamadas conos y otras denominadas bastones. Los conos permiten ver los colores, mientras que los bastones sirven para distinguir la intensidad de la luz.

Cuando una persona no puede distinguir bien los colores se dice que es daltónica.

También en la retina existe una zona conocida como punto ciego, porque carece de células nerviosas.

Los ojos son órganos muy delicados que deben protegerse para evitar daños a la visión.

Las cejas y pestañas sirven para detener partículas de polvo o tierra que pudieran entrar a ellos. Asimismo, las lágrimas los mantienen húmedos y también ayudan a eliminar posibles basuras.

Para cuidar la vista, debe evitarse jugar con objetos peligrosos que pudieran lastimar los ojos, como lápices, palos, tijeras o cuchillos.

Nunca debe verse directamente al Sol porque sus rayos dañan los ojos; si una persona se encuentra en un lugar con demasiada luz, es recomendable usar lentes oscuros. Igualmente deben usarse lentes de protección si se realizan actividades que pudieran lastimarlos y nunca tallarlos con las manos para evitar que se irriten.



VIDEO SOBRE EL SENTIDO DE LA VISTA



LA CONTAMINACIÓN AMBIENTAL

LA CONTAMINACIÓN AMBIENTAL

¿Qué es la contaminación ambiental?

Se denomina contaminación ambiental a la presencia en el ambiente de cualquier agente (físico, químico o biológico) o bien de una combinación de varios agentes en lugares, formas y concentraciones tales que sean o puedan ser nocivos para la salud, la seguridad o para el bienestar de la población, o bien, que puedan ser perjudiciales para la vida vegetal o animal, o impidan el uso normal de las propiedades y lugares de recreación y goce de los mismos. La contaminación ambiental es también la incorporación a los cuerpos receptores de sustancias sólidas, liquidas o gaseosas, o mezclas de ellas, siempre que alteren desfavorablemente las condiciones naturales del mismo, o que puedan afectar la salud, la higiene o el bienestar del público.

A medida que aumenta el poder del hombre sobre la naturaleza y aparecen nuevas necesidades como consecuencia de la vida en sociedad, el medio ambiente que lo rodea se deteriora cada vez más. El comportamiento social del hombre, que lo condujo a comunicarse por medio del lenguaje, que posteriormente formó la cultura humana, le permitió diferenciarse de los demás seres vivos. Pero mientras ellos se adaptan al medio ambiente para sobrevivir, el hombre adapta y modifica ese mismo medio según sus necesidades.
El progreso tecnológico, por una parte y el acelerado crecimiento demográfico, por la otra, producen la alteración del medio, llegando en algunos casos a atentar contra el equilibrio biológico de la Tierra. No es que exista una incompatibilidad absoluta entre el desarrollo tecnológico, el avance de la civilización y el mantenimiento del equilibrio ecológico, pero es importante que el hombre sepa armonizarlos. Para ello es necesario que proteja los recursos renovables y no renovables y que tome conciencia de que el saneamiento del ambiente es fundamental para la vida sobre el planeta
La contaminación es uno de los problemas ambientales más importantes que afectan a nuestro mundo y surge cuando se produce un desequilibrio, como resultado de la adición de cualquier sustancia al medio ambiente, en cantidad tal, que cause efectos adversos en el hombre, en los animales, vegetales o materiales expuestos a dosis que sobrepasen los niveles aceptables en la naturaleza.
La contaminación puede surgir a partir de ciertas manifestaciones de la naturaleza (fuentes naturales) o bien debido a los diferentes procesos productivos del hombre (fuentes antropogénicas) que conforman las actividades de la vida diaria.

Las fuentes que generan contaminación de origen antropogénico más importantes son: industriales (frigoríficos, mataderos y curtiembres, actividad minera y petrolera), comerciales (envolturas y empaques), agrícolas (agroquímicos), domiciliarias (envases, pañales, restos de jardinería) y fuentes móviles (gases de combustión de vehículos). Como fuente de emisión se entiende el origen físico o geográfico donde se produce una liberación contaminante al ambiente, ya sea al aire, al agua o al suelo. Tradicionalmente el medio ambiente se ha dividido, para su estudio y su interpretación, en esos tres componentes que son: aire, agua y suelo; sin embargo, esta división es meramente teórica, ya que la mayoría de los contaminantes interactúan con más de uno de los elementos del ambiente.






Tipos de contaminación

Contaminación del agua: es la incorporación al agua de materias extrañas, como microorganismos, productos químicos, residuos industriales, y de otros tipos o aguas residuales. Estas materias deterioran la calidad del agua y la hacen inútil para los usos pretendidos.


Contaminación del suelo: es la incorporación al suelo de materias extrañas, como basura, desechos tóxicos, productos químicos, y desechos industriales. La contaminación del suelo produce un desequilibrio físico, químico y biológico que afecta negativamente las plantas, animales y humanos.


Contaminación del aire: es la adición dañina a la atmósfera de gases tóxicos, CO, u otros que afectan el normal desarrollo de plantas, animales y que afectan negativamente la salud de los humanos.





Causas de la contaminación ambiental:

• Desechos sólidos domésticos
• Desechos sólidos industriales
• Exceso de fertilizante y productos químicos
• Tala
• Quema
• Basura
• El monóxido de carbono de los vehículos
• Desagües de aguas negras o contaminadas al mar o ríos


Contaminación ambiental según el contaminante

Contaminación química: refiere a cualquiera de las comentadas en los apartados anteriores, en las que un determinado compuesto químico se introduce en el medio.
Contaminación radiactiva: es aquella derivada de la dispersión de materiales radiactivos, como el uranio enriquecido, usados en instalaciones médicas o de investigación, reactores nucleares de centrales energéticas, munición blindada con metal aleado con uranio, submarinos, satélites artificiales, etc., y que se produce por un accidente (como el accidente de Chernóbil), por el uso ó por la disposición final deliberada de los residuos radiactivos.
Contaminación térmica: refiere a la emisión de fluidos a elevada temperatura; se puede producir en cursos de agua. El incremento de la temperatura del medio disminuye la solubilidad del oxígeno en el agua.
Contaminación acústica: es la contaminación debida al ruido provocado por las actividades industriales, sociales y del transporte, que puede provocar malestar, irritabilidad, insomnio, sordera parcial, etc.
Contaminación electromagnética: es la producida por las radiaciones del espectro electromagnético que afectan a los equipos electrónicos y a los seres vivos.
Contaminación lumínica: refiere al brillo o resplandor de luz en el cielo nocturno producido por la reflexión y la difusión de la luz artificial en los gases y en las partículas del aire por el uso de luminarias ó excesos de iluminación, así como la intrusión de luz o de determinadas longitudes de onda del espectro en lugares no deseados.
Contaminación visual: se produce generalmente por instalaciones industriales, edificios e infraestructuras que deterioran la estética del medio.

 Prevención de la contaminación ambiental

• No quemar ni talar plantas
• Controlar el uso de fertilizantes y pesticidas
• No botar basura en lugares inapropiados
• Regular el servicio de aseo urbano
• Crear conciencia ciudadana
• Crear vías de desagües para las industrias que no lleguen a los mares ni ríos utilizados para el servicio o consumo del hombre ni animales
• Controlar los derramamientos accidentales de petróleo
• Controlar los relaves mineros

Destrucción del ozono

El dióxido de carbono y el efecto invernadero están calentando el planeta. La destrucción del ozono debido a las actividades humanas ha llegado ya al punto en que los dañinos rayos solares, los ultravioletas B, llegan, en grandes zonas de la superficie terrestre, a niveles capaces de causar extensos daños a la vida.
Las dosis cada vez mayores de UV-B amenazan la salud y el bienestar humano, las cosechas, los bosques, las plantas, la vida salvaje y marina. Se ha producido una elevación de la tasa de cáncer de piel. La exposición a la radiación UV-B reduce la efectividad del sistema inmunológico.
Hay que prohibir la fabricación y uso de todos los compuestos destructores del ozono. La falta de agua, efecto del calentamiento del planeta, amenaza seriamente los medios de subsistencia de más de 1200 millones de personas, la cuarta parte de la población mundial. A pesar de las crecientes preocupaciones respecto a estos temas, las medidas de ámbito internacional encuentran escollos insalvables para su aplicación a causa del desarrollismo incontrolado, del consumismo y la miopía de los dirigentes políticos, cautivos de los intereses y la codicia de los clanes financieros.


VIDEO SOBRE LA CONTAMINACIÓN AMBIENTAL



RELACIÓN DE LA CONTAMINACIÓN DEL AIRE CON EL CALENTAMIENTO GLOBAL Y EL CAMBIO CLIMÁTICO.


Durante el desarrollo de este tema entenderás cómo se ocasiona la contaminación del aire por emisiones de dióxido de carbono, así como la relación de estas emisiones con el aumento de la temperatura y otros cambios climáticos de la Tierra. También valorarás algunas acciones cotidianas con las que puedes contribuir a reducir y prevenir la contaminación.



Respirar el aire para tomar oxígeno es un acto tan cotidiano que quizá nunca hayas pensado que no podrías realizarlo sin la atmósfera. Tú sabes qué es la atmósfera. Reflexionen y comenten la idea que tienen de este término.
La atmósfera es una mezcla de gases que rodea a la Tierra y que contiene elementos como: nitrógeno, oxígeno, dióxido de carbono, vapor de agua y ozono, entre otros. La atmósfera regula la temperatura y el clima, lo que nos permite vivir, nos protege de los rayos ultravioleta y de posibles impactos de meteoritos, y es el medio por el cual viajan las ondas para la telecomunicación.


La atmósfera terrestre protege a la Tierra.




El oxígeno ayuda a realizar la combustión de sustancias, lo que libera energía calórica que puede aprovecharse para el funcionamiento de las máquinas. En el siglo xix, durante la llamada
Revolución Industrial se comenzaron a utilizar máquinas a gran escala para aumentar la producción.
La energía que se necesitaba para hacer funcionar a las máquinas se extrajo principalmente de leña, luego ésta se sustituyó por carbón mineral y las máquinas se hicieron más eficientes, es decir, utilizando otros combustibles se obtenía más energía y se aprovechaba mejor. Actualmente se utilizan el petróleo y sus derivados como las principales fuentes de energía en nuestro planeta.



Al quemar combustibles se desprende un gas llamado dióxido de carbono (CO2). Cuando los rayos solares llegan a la Tierra, la calientan; el calor se disipa y la Tierra se enfría. El aumento en la producción de CO2 es un factor que provoca el calentamiento de la atmósfera y, por ello, el aumento general de la temperatura. El calentamiento atmosférico seguirá aumentando en la medida en que sigamos produciendo más dióxido de carbono.

                                


El dióxido de carbono que sube a la atmósfera incrementa su cantidad por la quema de combustibles y la deforestación aumentando el efecto invernadero.



Por muchos años se vio como algo cotidiano la quema de combustibles fósiles, pero se desconocía que los gases generados durante la combustión, como el monóxido de carbono y los óxidos de nitrógeno y azufre, se disuelven en el vapor de agua y lo contaminan al precipitarse en forma de lluvia ácida, la cual provoca daños al ambiente.


Fábrica de biocombustible para la producciónde etanol. El dióxido de carbono no es el único contaminante de la atmósfera.


Un dato interesante

Se les llama combustibles fósiles a las sustancias orgánicas
que quedaron atrapadas en condiciones especiales de
temperatura y presión y que con el tiempo se transformaron
en gas y petróleo. Estas sustancias almacenan una
gran cantidad de energía que se utiliza en los motores.
¡Imagínate! Estamos utilizando energía que se almacenó
hace millones de años.

El efecto invernadero es un fenómeno natural que mantiene a la Tierra con una temperatura adecuada para la existencia de la vida. Muchas de las actividades que realiza el ser humano emiten a la atmósfera gases como el dióxido
de carbono y metano aumentando el efecto invernadero a niveles dañinos. Es preciso que cada uno de nosotros utilice de manera racional los combustibles fósiles y consumir sólo lo necesario. Estas acciones deben ser personales, familiares y de la colectividad.



Un dato interesante 

En 1997 se realizó un acuerdo entre varios países, los cuales se comprometieron a disminuir la cantidad de dióxido de carbono que emiten a la atmósfera, así como otros gases con efecto invernadero. Este acuerdo es conocido como el Protocolo de Kioto, y en él se establece el compromiso de realizar acciones para reducir la emisión de estos contaminantes. En la actualidad, 166 países han firmado este documento, entre ellos México. México contribuye con el 1.5% de la producción de CO2 a nivel mundial.





PROBLEMÁTICA AMBIENTAL